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Abstract We prove the almost sure convergence to zero of the fluctuations of the free energy in 
a class of disordered mean-field spin systems that generalize the Hopfield model in two ways: (i) 
Multi-spin interactions are permitted and (ii) the m d a m  variables $‘ describing the ‘panem’ 
can have arbitrary distributions with m e f l  zero and finite (4 + s)th moments The number 
of panerns, M. is allowed to be an arbitraty multiple of the system size. This generalizes a 
previous result of Bovier. Gayrard and Picm for Lhe standard Hopfield model, and improves a 
result of Feng and Tizd that required M to be a finite wnstant. Note that the wnvergence of 
the mean of the free energy is nor proven, 

1. Introduction 

Over the past few years some interesting properties of ‘self-averaging’ have been observed in 
two classes of ‘spin-glass’ type models of the mean-field type, the Shemngton-Kirkpatrick 
model [SKI and the Hopfield model [FP,Ho]. The latter, largely used in the context of 
neural networks, may be of particular interest, as it contains a parameter, the number M 
of stored patterns as a function of the size of the system N, which can be adjusted to alter 
the properties of the model. In a paper by Pastur and Shcherbina [PSI, it was observed that 
the variance of the free energy of a finite system of size N in the SK model tends to zero 
as 1/N, implying the convergence to zero in probability of the difference between the free 
energy and its mean. This result was later generalized to the Hopfield model by Shcherbina 
and Tuozzi [ST] under the assumption that the ratio a = M/N remains bounded as N t W. 

Further results of this type can be found in an interesting paper by Pastur, Shcherbina and 
Tirozzi [PST]. Self-averaging properties of the large deviation rate function as a function 
of the macroscopic parameters of the model (the so-called ‘overlap parameters’, see below) 
were used crucially in two papers by Bovier, Gayrard and Picco [BGPZ,BGP3]. Tbere, 
sharper than variance estimates were needed, and as a consequence [BGP3] contains in 
particular a proof of the almost sure convergence to zero of the difference between the free 
energy and its mean, both in the Hopfield model under the assumption that M f N  be bounded, 
and in the SK model. Independently, Feng and Tuozzi [RI have recently proven such a 
result in a class of generalized Hopfield models, but under the very restrictive assumption 
that M itself be a bounded function of N .  Tbe purpose of the present paper is to show that 
such a condition is in fact unnecessary. 

Let us describe the class of models we will consider. We denote by SN = (-1. IIN the 
space of functions U : A -+ [-1,1]. We call U a spin configuration on A. S (-1, ltN 
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denotes the space of half-infinite sequences equipped with the product topology of the 
discrete topology on {-1, 1). We denote by BA and B the corresponding Bore1 sigma 
algebras. We will define a random Hamiltonian function on the spaces SA as follows. 
Let (Q, 7, P) be an abstract probability space. Let : (.5r]i,llE~ be a two-parameter 
family of independent, random variables on this space, We will specify our assumptions 
on their distribution later. In the context of neural networks, one assumes usually that 
P(cr = 1) = = -1) = k, but here we aim for more general distributions. We 
consider Hamiltonians of the form 

Here r p 2 is some chosen integer. The case r = 2 corresponds to the usual Hopfield 
model, and models with general r were introduced by Lee et a[ [Lee] and Peretto and 
Niez [PN]. Feng and Tirozzi [FT'I also studied these models, but removed the terms in the 
sum where two or more indices coincide, which actually amounts to adding a term of the 
order of a constant to H which does not alter the free energy. One may actually consider 
more general models in which the Hamiltonian is given as a linear combination of terms of 
the type (1.1) with different values of r .  This only complicates, but does not really alter, 
the proofs, and our results can easily be extended to this situation, 

Let us introduce the so-called 'overlap parameters'. This is the M-dimensional vector 
" ( U )  whose components are given by 

In terms of these quantities, the Hamiltonian can be written in the very convenient form 

UN@) = - N  IlmN(o)ll: , (1.3) 
We define the partition function 

and the free energy 
1 

B N  
FN(B) = --h Z N ( 0 ) .  

It will be important to realize that 

IlmN(u)ll: < llA(N)ll 
where A ( N )  is the N x N matrix whose elements are 

Properties of the maximal eigenvalues of this matrix will be crucial for us. The eigenvalue 
distribution of this matrix was first analysed by Marchenko and Pastur [ M P ] .  Girko [Gi] 
proved that, under the hypothesis of theorem 1, the maximal eigenvalue of A ( N )  converges 
to (1 + fi)2 in probability. Adding the ideas used by Bai and Ym [BY] one can easily 
show that this convergence also takes place almost surely, and even in the case where only 
the fourth moment of 6: is finite. We will need additional estimates on the moments of 
llA(N)ll which we are only able to prove if we have a little more than four moments. The 
relevant estimate is formulated in the following lemma. 
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Lemma 1.1. Assume that ECr = 0, E ($)' = 1 and E ($')'+' < c c 00, for some E > 0. 
Then, for any > 6 and any 6 z 0, if N is sufficiently large 

M where 01 = X ,  y = &. 
Remark. The proof of lemma 1.1 is in fact an adaptation of the the truncation idea in [BY] 
and fairly standard estimates on the traces of powers of A, as in [BY] (but see also [BGPI]). 
We will therefore not give the details of the proof of lemma 1.1, but only mention that the 
second term is a bound on the probability that any of the .$ exceeds the value f i 8 ,  while 
the first is a bound one would obtain $all &@ satisfied this condition. 

With thii in mind we define 

.fN(p) E -p-' ~~ZN(~)~(l lA11~2(l ta)2)  (1.9) 

We will prove: 

Theorem 1. Assume that l i m y  = 01 c 00 and ( satisfies the assumptions of lemma 
1.1. Then 

(i) If r = 2. for all n e CO there exists cn < CO, such that for all r > r,, and for N 
sufficiently large 

P [ I J N ( ~ )  -EJN(~)I > c 0 n ~ ) 3 / 2 ~ ' / 2 ]  < N - " .  (1.10) 

(ii) If r > 3, then there exist constants C, c,  c' > 0 such that 

We prove theorem 1 in the next section. Before doing that, we will show that it implies 
the following theorem. 

Theorem 2.  Under the assumptions of theorem 1 

l i  IF,-@) - IEFN(@)I = 0 
Ntm 

a.s. (1.12) 

Remark. Theorem 2 was proven under the additional assumption that (,? = f l  for the case 
r = 2 in [BGP3]. In [ITl theorem 2 was proven under the hypothesis M ( N )  < MO c CO 

and that E (.$')4 c CO. 

Remark. Theorem 2 may in some way be regarded as a strong law of large numbers. 
We are, however, reluctant to employ this term, because the convergence of EFN(,~)  to a 
l i t  is, in general, not proven. In the standard Hopfield model this was proven under the 
assumption h N t m  = 0 by Koch [K] (see also [BG]). 

We conclude the introduction by giving the proof of theorem 2, assuming theorem 1. 
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Proof of theorem 2. Set 2(1 +az = p .  Obviously, 

FN(B) = $ A ( p )  f FN(B)n{llA(N)ll>p). (1.13) 

By theorem 1 and the first Borel-Cantelli lemma it follows that 

(1.14) 

Thus theorem 2 will be proven if we can show that FN(p)n(llA(N)115p) $ 0 both almost surely 
and in mean. The almost sure convergence follows easily, since 

' [ F N ( B ) n [ l l A ( N ) l l z o l  # 0 i.0.1 < P[IIA(N)II =- P i.0.1 = 0 (1.15) 

where the last equality follows from applying lemma 3.1 from Bai and Yin [BY]. Finally, 
to prove convergence of the mean, we use first of all that 

and therefore 

(1.16) 

(1.17) 

But 

(1.18) 

To obtain the last expression we used lemma I . I  and made the choice 8 = 8(y.  x )  = y'l4 
and q ( x )  = max (6, x/8). Obviously, the right-hand side of (1.18) tends to zero as N f CO, 

0 as desired. This concludes the proof of theorem 2, assuming theorem 1. 

Remark. Note that the estimate in (1.18) implies in particular that 

WA(N)II < C(1+ &)' (1.19) 

for some constant depending only on E .  This is relevant for proving theorem 1 in the case 
r = 2 (see [BGP3]). 
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2. Proof of theorem 1 

The basic idea of the proof is the same as in [BGP3] where the case r = 2 has been 
considered, but some modifications are necessary, in particular to avoid any restrictions on 
the value of a. 

The fact that sharper estimates can be obtained in the case r 2 3 may justify the 
presentation of the details of the proof in that case. 

We first introduce the decreasing sequence of sigma-algebras 3 k  that are generated 
by the random variables (ti fi ] i 2 k .  Pm Since the variables f~(p) are non-zero only if 
IlAll 6 2(1 +az, we may introduce the event 

A = {IlAll < 2(1 + 4)’) C 3 (2.1) 

= 3 n A. This allows us to introduce the and the corresponding trace-sigma algebras 
corresponding Martingale difference sequence [Yu] 

Notice that we have the identity 

by the definition of conditional expectations. The factor P[d] tends to 1 as N t 1, so that 
we just have to control the sum of the f,,)@). To get the sharpest possible estimates, we 
want to use an exponential inequality. To this end we observe that [BGP3] 

To make use of this inequality, we need bounds on the conditional Laplace transforms; 
namely, if we can show that, for some function t“)(t) ,  InE[efff’(J)I&+l] < @)(t), 
uniformly in &+I, then we obtain that 

Note that this construction is so far completely model-independent. In the estimation of 
the conditional Laplace transforms, a conventional trick [PSI is to introduce a continuous 
family of Hamiltonians, I?:’(., U ) ,  that are equal to the original one for U = I and are 
independent of .$ for U = 0. We first introduce the M(N)-dimensional vectors 
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and then define 

Note that this procedure can of course be used in all cases where the Hamiltonian is a 
function of the macroscopic order parameters. Naturally, we set 

and finally 

f,$)(/3, u )  = (Inzt)(/3. u )  - In ~!)(/3, 0)) . (2.9) 

Since for the remainder of the proof, /3 as well as N will be fixed values, to simplify our 
notations we will write f ~ ( u )  f$)(/3, U), It relates to f,$)(/3) via 

f$)(B) = E[fi(l)l&] -E[fk(l)lFk+,] . (2.10) 

To bound the Laplace transform, we use that, for all x E W, 

ex 6 1 + x + $xZelX’ 

so that 

(2.1 1) 

Our strategy in [BGB] was to use a rather poor uniform bound on if)(@) in the 
exponent but to prove a better estimate on the remaining conditioned expectation of the 
square. Here it will do the same. Notice that f i ( u )  is convex, fX(0) = 0, and therefore 
Ifd1)I 6 m=(Ifx’(O)l, If‘(1)l). But 

where &k,u denotes the expectation w.r.t. the probability measure 

(2.13) 

(2.14) 

One easily verifies that $(O) = 0, so that we can use in the following that Ifi(1)l 6 IfL(1)l. 
Obviously 
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Computing the derivative, we obtain 

(2.16) 

In the usual case, where lcrl < 1, we can bound the sup-norms appearing in (2.16) by 
~ ~ m , + ~ ( u ) \ ~ ~  < 1; in the case of unbounded e, we can still use that llm~(u)II, < Ilm~(u)llz. 
On A, the latter is bounded by 2(1+ &)'. Of course here we assumed that r > 3. In this 
case, therefore, on A, 

(2.18) 

in general. Using these estimates, we see that on A we have 

(mq < c (2.19) 

where C = C(a)  is some finite constant depending on f .  Using this bound in (2.12) we 
see that 

(2.20) 

To obtain (1.11). we insert this bound into (2.5) and bound the infimum over I by its value 
for f = z/Cz, if z < ln2C. and by its value for z = C-', if z > C ln2. This concludes (ii) 
of theorem 1. 0 

This leaves us with the case r = 2. The new difficulties have been heated in [BOP31 
and here we just recall the main steps. Instead of (2.22) we have here that 

(2.21) 
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Using this, we get 

Then, just as in [BGP3] one easily verifies (using the convexity of h(u)) that 

E [(f$)(fi))z Ipk+l] 6 E[(f,'(1))21jk+l] . (2.23) 

Symmetrizing with respect to the $ that are integrated over in (2.23) one obtains from here 
[BGP3] 

E[(f,'(1))21Fk+l] 6 2(1 +&)zIEIIIB")II IA] 

where B(k) is the random mafxix with elements 

(2.24) 

Note that the conditioning on A in (2.24) is essentially irrelevant here, since the probability 
of A is close to 1. Now it is easy to see that IIB(k)II = llA(k)ll, and so, by the estimate 
(1.18), we have that 

(2.26) 

Therefore we have 
N 

Eexp f fZ'(6) 6 exp { c ~ ~ E ~ I ' I ~ ~ V ( ~  + 4& + (Y In N ) }  . (2.27) { k=I ] 
Inserting this in (2.4) and choosing t = it% then gives estimate (i) of theorem 1. 0 

Let us conclude this paper with some final remarks. We have shown in this paper 
how sharp estimates on the fluctuations of the free energy (as a function of the 'overlap 
parameters') can be obtained in a very wide class of disordered mean-field models 
generalizing the Hopfield model (note that the case of the Shemngton-Kirkpatrick model 
can be treated in much the same wa , see [BGPJ]). In particular, we have shown that 
typical fluctuations are of order 1 /  P N and converge to zero almost surely. We should 
again stress, however, that this does not imply that the free energy itself converges almost 
surely to some value in the thermodynamic limit. The problem here is the average of the 
free energy. Note that in most of the literature on disordered systems, one tries to compute 
this average, tentatively assuming the self-averaging. But, although heuristic techniques 
and in particular the replica-trick allows one to do this to some extent, there is in general 
no rigorous argument that would ensure that the average of the finite-volume free energy 
converges. For the models considered in this paper, the average of the free energy is 
uniformly bounded between two constants; this follows from the bound (1.19). But nothing 
does, in principle, exclude that the h e  energy is a very irregular, oscillating function of 
the volume. Currently, only in the case u(N)  J. 0, or at high temperatures, can this be 
rigorously excluded. 
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